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LOCAL INSTABILITY OF PLATES WITH PRESSED-IN ANNULAR INCLUSIONS

AT THE ELASTOPLASTIC BEHAVIOR OF MATERIALS

UDC 539.374D. V. Gotsev, A. V. Kovalev, and A. N. Sporykhin

The local instability of plates with annular inclusions is studied within the framework of exact three-
dimensional equations. A numerical experiment is performed for the case where two rings are pressed
in a plate made of the same material as the rings. The effect of the physicomechanical parameters
of a medium on the critical contact pressures is studied.

It is well known that an analysis of the behavior of prestressed composite structures reduces to the formulation
and solution of the problems of local instability [1, 2] at elastoplastic strains. In this paper, we study the buckling of a
composite plate-like structure made of an elastoplastic material with translational hardening in an exact formulation
based on the three-dimensional linearized theory of stability [3]. In this case, the loading function has the form [4]

F = (Sjs − cβ(εjs)
p)(Sjs − cβ(εjs)

p)− k2
β = 0, (1)

and the relations of the associated flow rule are given by

(ejs)
p = η(Sjs − cβ(εjs)

p). (2)

Here cβ are the hardening coefficients, kβ are the yield points, Sjs = σjs−σδjs is the deviatoric stress tensor, σ = σkk/3,
δjs is the Kronecker symbol, εjs are the strain-tensor components, ejs are the components of the strain-rate tensor,
and η is a positive factor. The subscript s and the superscript j take on the values from 1 to 3. Summation is
performed over repeated sub- and superscripts.

We consider the local instability of a plate-like structure which consists of an infinite plate with a circular
hole of radius RN into which a system of N rings pressed one in another is inserted with interference. The inner
contour of the first ring is loaded by a uniformly distributed pressure q0. It is assumed that the plate and the
inclusions are made from different materials. On the contact lines of the units, the compressive forces q1, q2, . . . , qN
occur because of interferences. The quantities qi (i = 1, 2, . . . , N) are such that the plastic regions completely cover
the inner contours of the rings. We study the buckling of a plate-like structure within the framework of the second
variant of the theory of small subcritical strains [5] with the use of the concept of continuous loading.

The subcritical stress–strain state of a plate-like structure under plane deformation is determined from the
solution of two coupled problems of stress concentration. The stress–strain state of the ith ring is determined in
the first problem, and the stress–strain state of the plate is determined in the second problem.

In the polar coordinates (r, θ), the subcritical strains and stresses of the ith ring have the forms [5]
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in the plastic region for Ri−1 < r < ψi and
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in the elastic region for ψi < r < Ri. Here

bi1 = −ψ
2
i (3
√

2 ki + ciqi)
2(6− ciψ2

i )
, ai2 = bi1

(
1 +

ψ2
i

3

)
− qiψ

2
i

6
.

The radius of the elastoplastic boundary ψi is determined from the equation
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In expressions (3)–(5), the subscript i takes on the values 1, 2, 3, . . . , N (N is the number of rings), ψi and Ri are
the radii of elastoplastic boundaries and the rings, respectively.

In polar coordinates, the subcritical strains and stresses of the plate have the forms
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in the plastic region for RN < r < γ and
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in the elastic region for γ < r <∞.
The radius of the elastoplastic boundary γ is determined from the equation
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√

2 k
2(2 + c)
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In expressions (3), (4), and (6), ur is the displacement-vector component and c and k are the hardening coefficient
and yield point of the plate material, respectively.

Relations (3)–(8) are written in dimensionless form. The quantities that have the dimensions of stress and
length are normalized to the shear modulus G and the outer radius of the first ring R1, respectively. The superscripts
e and p show that the quantities correspond to the elastic and plastic regions, respectively.

The stability analysis of the subcritical state (3)–(8) of a composite plate-like structure reduces to the solution
of the variational equations of equilibrium for the plastic and elastic regions subject to corresponding boundary
conditions. We write the equations of equilibrium [5]

∇s(σsj + σ0s
α ∇αuj) = 0, (9)

the boundary conditions

Ns(σsj + σ0s
α ∇αuj) = 0, (10)

and the continuity conditions for stresses and displacements at the interfaces of the elastic and plastic regions

[Ns(σsj + σ0s
α ∇αuj)]Σ = 0, [uj ]Σ = 0. (11)

Here the square brackets denote the difference between the enclosed quantities in the elastic and plastic regions;
Σ is the interface of these regions.

In the plastic and elastic regions of the incompressible elastoplastic model of a medium, a relation between
the amplitudes of stresses and displacements has the form [5]

σsj = (asαgαα∇αuα + ρ)gsj + (1− gsj )gssGsj(∇suj +∇jus), (12)

where ρ is the Lagrange multiplier and gsj are the components of the metric tensor (no summation over the subscripts
s and j is performed). The quantities asα and Gsj can be written in the form
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asα = 2µgsα −
4µ2χf0

ssf
0
αα

k2
β(2µ+ cβ)

, Gsj = µ = G, f0
sj = S0

sj − cβε
0p
sj . (13)

The value of χ = 1 corresponds to an elastoplastic medium [4], and χ = 0 to an elastic medium. The superscript 0
denotes the subcritical state.

With allowance for the incompressibility condition, Eqs. (9)–(13) constitute a coupled boundary-value static-
stability problem for the amplitudes of the displacement-vector components u, v, and w and the hydrostatic pressure
p in the elastic and plastic regions of the rings and the plate. The nontrivial solution of this problem corresponds
to the instability of the subcritical state. To find eigenvalues of the problem, we approximate the displacements
and the hydrostatic pressure in the elastic and plastic regions of the rings and the plate by double trigonometric
series [5]:
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m

Anm(r) cos (mθ) cos (nz), v =
∞∑
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Here n and m are the wavenumbers.
Substituting the functions u, v, w, and p into the linearized stability equations (9) and taking into account

relations (12) and (13) and the incompressibility condition, after some manipulations we obtain the following infinite
system of differential equations for Anm and Bnm:
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In (15) and below, the subscript nm at A and B is dropped.
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Fig. 1 Fig. 2

Using relations (11) and (13), we write the continuity conditions for displacement perturbations
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(17)
(A′′)pi − (A′′)ei = 0

at the interface of the elastic and plastic regions of the inclusions ψi (i = 1, 2, . . . , N). One can obtain conditions
similar to (17) at the interface of the elastic and plastic regions of the plate γ.

Using (10), we obtain the relations

Api+1 − (A′)pi+1 +
m

Ri
Bpi+1 + (B′)pi+1

{ Ri
2ma0

[(σ0
r,r)

p
i+1 − (σ0
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(A′′)pi+1 − (A′′)ei = 0 (i = 1, 2, . . . , N)

which must be satisfied at the interface of the ith and (i+ 1)th rings. The condition of local perturbations uj → 0
as r →∞ (j = 1, 2, 3) yields

(A′)e = 0, (A′′)e = 0, (B′)e = 0, (B′′)e = 0. (19)

Since we failed to find an analytical solution of the boundary-value problem (15)–(19), we seek its approxi-
mate solution by the finite-difference method [6]. As a result, we obtain an infinite system of homogeneous algebraic
equations linear in the parameters Anm and Bnm that must be solved with allowance for Eqs. (5) and (8) deter-
mining the elastoplastic boundaries of the rings and the plate, respectively. Local buckling occurs for the nonzero
values of Anm and Bnm. The parameter qi is minimized with respect to the step of the finite-difference grid h, the
wavenumbers m and n, and the material and structure parameter λj .
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As a result, we arrive at the problem of multidimensional optimization of the quantities qi (i = 1, 2, . . . , N)
with respect to m and n. This problem reduces to the determination of a condition under which the determinant
of the resulting algebraic system vanishes: det (qi,m, n, λj) = 0.

As an example, we consider the case where two rings (N = 2) are pressed in a plate. The material of the
plate and the rings is assumed to be the same. As a material, we used St. 3 steel (c = 0.002, k = 0.0014, and
G = 0.81 · 106 kg/cm2) and copper (c = 0.006, k = 0.0005, and G = 0.81 · 106 kg/cm2).

Figure 1 shows regions of the critical contact pressures q1 and q2 for n = m = 3 and q0 = 0 at the inner
contour of the first steel ring. Region I corresponds to R0 = 0.002 and R2 = 1.1 and comprises region II (R0 = 0.007
and R2 = 1.1), which, in turn, comprises region III (R0 = 0.02 and R2 = 1.1).

Figure 2 shows regions of the critical contact pressures q1 and q2 for n = m = 4 and q0 = 0 at the inner
contour of the first copper ring. Region I corresponds to R0 = 0.002 and R2 = 1.1 and comprises region II
(R0 = 0.007 and R2 = 1.1), which, in turn, comprises region III (R0 = 0.02 and R2 = 1.1).

An analysis of the numerical results shows the following:
— the region of the critical parameters q1 and q2 increases with the width of the internal ring;
— the region of the critical parameters q1 and q2 decreases with the physicomechanical characteristics c and k;
— a one-term approximation of the displacements gives the overestimated critical parameters q1 and q2.

For a St. 3 steel plate with inclusions, the local-buckling mode is nonsymmetric: three half-waves form in the
direction of the θ axis and three half-waves form in the z direction. For copper, local buckling occurs for m = n = 4.
Setting R2 = R1, we obtain the critical load q1 of a plate with one annular inclusion.
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